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Abstract

Gravitational lensing is a General Relativistic effect where a foreground mass distribution (e.g.,
a galaxy) distorts and magnifies light from distant sources. Lensing can also produce multiple im-
ages of the same source. To understand the properties of a lensed source, we must accurately model
the lens system, which requires us to account for all lensed images. This leads to the mathematical
problem of bounding the number of images. We analyzed this problem in the Newtonian frame-
work. We derived the deflection angle for a single mass and showed that it is finite, necessitating
modifications to existing mathematical analyses. We developed a routine to compute the angle for
multiple masses in a single plane. Using two-dimensional root finding and the Virbhadra-Ellis lens
equation, which is a relationship between the source and image positions, we constructed configu-
rations that saturate known bounds on the number of images, laying a foundation for subsequent
mathematical analyses.

1 Introduction

Gravitational lensing is the General Relativistic phenomenon in which light rays “bend” around a
mass distribution due to the spacetime curvature it imposes. Although this effect was first proposed
and briefly studied by 18th and 19th-century physicists like Isaac Newton and Johann von Soldner,
the first correct theory and predictions were not made until 1915 using Albert Einstein’s new Theory
of General Relativity. The first observation came four years later during Arthur Eddington’s famed
1919 solar eclipse expedition. In the 106 years since, gravitational lensing has transformed from a
cosmic peculiarity to a major astrophysical tool.

This transformation is partly due to gravitational lensing’s ability to magnify and produce mul-
tiple images of distant sources, providing rare glimpses into an unobservable universe. For instance,
in strong gravitational lensing, a galaxy cluster between the source and the observer produces com-
plicated configurations of multiple images of distant sources. In gravitational microlensing, distant
point-like sources are lensed by a collection of compact bodies like stars and black holes [10]. The
granular distribution of these bodies can produce various numbers of images depending on the
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source’s angular position in the plane of the sky. Studying these images enables astrophysicists to
understand physical conditions in the distant and early universe.

For example, [4] and the JWST PEARLS team reported an unanticipated diversity in the proper-
ties of galaxies strongly lensed by the El Gordo galaxy cluster (ACT-CL J0102-4915). Meanwhile,
[9] reported the discovery of a terrestrial-mass rogue planet microlensed by a compact object roughly
the size of the Earth. Likewise, microlensing of distant quasars produces observable variations in
their brightnesses, which can help us understand their physical properties [10].

To interpret and reconstruct distant sources microlensed by compact bodies, it is necessary to
understand and capture the lensing distortions and magnifications caused by these bodies through
lens models. While a considerable amount of work has studied ways to improve lens models [8, 12,
13, 17], one important common factor in these works is a proper accounting of the total number of
lensed images produced.

From a mathematical standpoint, analyzing variations of this problem under assumptions like
the Newtonian theory of gravitation, the Born approximation, and the small-angle approximation
for different classes of lens systems leads to many interesting results. For instance, [10] showed
there are exactly two lensed images for a single point-mass using differential topology and Morse
Theory. For a collection of g > 1 point masses on a single plane, [7, 10, 14] showed that the
number of lensed images is at least g+1, and at most 5g−5. However, in some sense, these results
are incorrect in the complete General Relativistic (GR) framework. An analysis of gravitational
lensing by a point mass in the Schwarzschild metric reveals that there are two “principal” images,
and infinitely more “relativistic” images that correspond to light rays that loop around a black hole
n ∈ N times[3]. This suggests a breakdown when going from the complete relativistic framework
to the specific assumptions used in previous work that must be rigorously analyzed.

Therefore, we studied the full-angle Virbhadra-Ellis gravitational lens equation [16] in the New-
tonian framework without the Born, Small-Angle, and Thin-Lens approximations. While a mathe-
matically rigorous analysis of the equation was out of scope of this project, we provided a numerical
framework for future mathematical analysis of this problem. We examined whether the existing
mathematical framework developed in [10] can be used to determine a lower bound on the number
of solutions by constructing the deflection angle for a single point mass. We also examined the
possibility of multiple image formation and if the number of solutions to our equation satisfies the
g + 1 ≤ N ≤ 5g − 5 inequality. While we conjecture that our equation satisfies the same bounds,
we also show that we must modify existing mathematical proofs for the lower bound, which could
lead to new and interesting connections within mathematics, and between mathematics and astro-
physics. In Section 2, we discuss various components of our methodology. Section 3 discusses our
results, and Section 4 discusses our conclusions and provides implications for future work

2 Methodology

2.1 A Mathematical Problem

We consider the physical configuration depicted in Figure 1. Let g ≥ 1 be a positive integer,
ξ1, . . . , ξg be infinite singularities in a potential ψ : L → R, and m1, . . . ,mg be their “masses”.
Define β : L→ S to be the map,

β(θ) = θ −
g∑

j=1

mj

θ − ξj∣∣θ − ξj
∣∣2 . (1)

This equation is the small-angle gravitational lens equation. For future reference, we denote
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Figure 1: Depiction of gravitational lensing. For future reference, β := y and θ := x. This figure
is borrowed from [11].

the second term on the right side of the equation by (dLS/dS)α̂, where dLS is the distance between
L and S, dL is the distance between the observer and L, and dS = dLS + dL

1. This term signifies
the total deflection angle of a light ray coming from a distant source.

In this context, Eq. (1) is a relationship between the angular position of the source in the plane
of the sky β, the image positions θ, and the total deflection that an incoming light ray experiences
(dLS/dS)α̂. Physically, light rays from a distant source originate in S and pass through L before
reaching the observer. However, since multiple images of a source are possible, a map from S to L
is generally one-to-many, and is not a well-defined function. However, the inverse map β : L → S
maps each image θ in L to a single point β in S, and is well-defined. Now, we make the following
definitions [11]:

Definition 2.1 (Critical Points of β). We define the set of critical points of β, denoted crit(β) to
be the set

crit(β) := {θ ∈ L : det[Jacβ](θ) = 0} . (2)

Astrophysically, the set of critical points of β consists of all the points in the lens plane L that are
infinitely magnified by gravitational lensing.

Definition 2.2 (Caustic points of β). We define the set of caustic points of β as the image of
crit(β) under β:

caus(β) := β (crit(β)) ⊂ S.

Astrophysically, these are the set of all possible source positions that can produce an infinitely
magnified image.

Then [10], [7, 14] obtained the following results, respectively:

Theorem 1 (Lower Bound on the Number of Solutions). If y = β(θ) is not in a caustic of β,
and the set of critical points of β is bounded and consists of only folds and cusps (see Figure 2 for

1Formally, this “sum rule” does not apply to angular diameter distances, which are typically used in the lens
equation. However, since our system consists of point masses, we can assume that the spacetime outside of these
masses is sufficiently flat, in which case this rule holds.
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Figure 2: Caustic curves corresponding to critical curves containing folds (left) and cusps (right).
This figure is adapted from [1].

examples), then for sufficiently large y, the lower bound on the number of solutions to Eq. (1) is
attained: N = g + 1.

Theorem 2 (Upper Bound on the Number of Solutions). If g ≥ 2 and y = β(θ) is not in a caustic
of β, then the number of solutions to Eq. (1) satisfies the upper bound, N ≤ 5g − 5.

It has been shown that by Fermat’s Principle, the solutions to Eq. (1) are precisely the critical
points of the time-delay map, Tβ : L→ R [2, 15]. Physically, Tβ provides a measure of the delay in
the time taken by a light ray emitted by a distance source in S in reaching the observer because
of the extra distance that it must travel due to a bend in its trajectory and the gravitational time
dilation the light ray experiences as it passes through the gravitational wells of the masses.

For instance, the time-delay map corresponding to Eq. (1) is,

Tβ(θ) =
1

2
|θ − β|2 −

g∑
j=1

mj log
∣∣θ − ξj

∣∣ . (3)

To find the critical points of Tβ, we look for the roots of its gradient.

=⇒ ∇Tβ = θ − β −
g∑

j=1

mj

θ − ξj∣∣θ − ξj
∣∣2 = 0.

=⇒ θ − β −
g∑

j=1

mj

θ − ξj∣∣θ − ξj
∣∣2 = 0.

=⇒ β = θ −
g∑

j=1

mj

θ − ξj∣∣θ − ξj
∣∣2 ,

(4)

where the last equation is Eq. (1).
Therefore, to find the total number of solutions to Eq. (1), it suffices to examine the number of

critical points of Tβ. [10] reported that the number of such points are constrained by the Betti num-
bers, B0, B1, and B2, which are topological invariants of a surface. Intuitively, the kth Betti number,
Bk, represents the number of k-dimensional holes in a surface2. While a complete discussion of
the theory of Betti numbers requires differential topology and Morse Theory, calculating the Betti

2https://www.quantamagazine.org/topology-101-how-mathematicians-study-holes-20210126/
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numbers provides a series of inequalities, called the Morse inequalities. [10] then showed that these
inequalities readily imply the lower bound referenced in Theorem 1. However, the key requirement
for these inequalities to hold is that the time-delay surface, and hence the deflection angle α̂ must
diverge at each of the point masses mj . We can see this in Eq. (3) since lim

θ→ξj
log
∣∣θ − ξj

∣∣→ −∞.

On the other hand, verifying the upper bound referenced in Theorem 2 requires elements of
complex and harmonic analysis. While [14] provided explicit constructions of physical configura-
tions that saturated the upper bound, [7] explicitly studied this bound for a more general family
of harmonic rational functions and demonstrated that Eq. (1) belonged to this family.

2.2 Our Analysis

2.2.1 Background

Eq. (1), studied by [7, 10, 14], implicitly assumes three approximations: (1) the small-angle
approximation, (2) the Born approximation, and (3) the Thin-Lens approximation. In the small-
angle approximation, we assume that the angular positions of the sources and images, and the
deflection angle α̂ have sufficiently small magnitudes (≪ 1 rad). While this assumption is sufficient
for general gravitational lensing configurations, some systems, particularly those involving large
deflections of rays passing close to a compact body like a black hole, may not be modeled accurately
by the approximation. Likewise, the Born approximation, in which we calculate the total deflection
by computing the total impulse acting on a light ray along the undeflected trajectory, and the
Thin-Lens approximation, in which we assume that a light ray bends only as it passes the lens,
may not be the correct pictures of gravitational lensing for more general configurations.

Therefore, we studied the full-angle Virbhadra-Ellis lens equation [16]:

tan(β) = tan(θ)− dLS
dS

(tan(θ) + tan (α̂− θ)) . (5)

Figure 3 depicts the lensing geometry with each of the angles (note that the figure depicts the
Thin-Lens approximation, although neither Eq. (5) nor our analysis uses this approximation), and
compares our work with previous research.

Assuming the small-angle approximation (i.e., β,θ, α̂ ≪ 1 rad, and tan(x) ≈ x) enables us to
recover Eq. (1).

Unlike [7, 10, 14], we work in the Newtonian framework of gravity, whereby we assume Newton’s
law of universal gravitation, and a corpuscular picture of the photon with mass m̃→ 0. While the
Newtonian framework is not the correct picture of gravity and gravitational lensing and is therefore
not immediately applicable to astrophysics, Eq. (5) is still interesting mathematically and provides
a numerical framework upon which similar work in the full relativistic framework can be done in
the future.

To find the deflection angle α̂ due to a system of g point-masses m1, . . . ,mg in L, we first
calculate the trajectory of a photon coming from infinity in the +x̂-direction by solving the following
differential equation: 

d2r

dt2
= −G

g∑
j=1

Mj

r− ξj∣∣r− ξj
∣∣3 ,

r(0)= (−∞, by, by),

ṙ(0)= (c, 0, 0),

(6)

5



Previous Work Our Work

Newtonian × ✓
Small-Angle ✓ ×

Born ✓ ×
Thin-Lens ✓ ×

Figure 3: (Left) Schematic depiction of gravitational lensing. The sharp bend at C depicts the
Thin-Lens approximation. (Right) A comparison of our work with previous research.

where b = (by, bz) is the impact parameter and c is the speed of light. Then we calculate the
difference between the initial and final slopes to find the deflection angle. We note that the deflection
angle α̂ is a two-dimensional vector in L. The components of α̂ are given in Eq. (7).

α̂i = arctan

(
ri(tf )− ri(tf − δt)

rx(tf )− rx(tf − δt)

)
− arctan

(
ri(δt)− ri(0)

rx(δt)− rx(0)

)
, i = y, z. (7)

We solve the differential equation, Eq. (6) over the time interval [0, tf ], for sufficiently large tf .

2.2.2 Overview of Questions

Through our analysis, we sought to answer the following questions:

QI : Can the original proof of the lower bound by [10] be readily adapted to our equation? That
is, does our deflection angle diverge near each point mass?

QII : Can our gravitational lens equation produce infinitely many “relativistic” images as in the
complete General Relativistic framework?

QIII : Can our lens equation have multiple solutions? If so, how do these images compare with
image positions predicted by the relativistic framework adopted by [7, 10, 14]?

QIV : If we can produce multiple images, can we also produce lens configurations that saturate the
existing lower and upper bounds?

To answer these questions, we used the following steps:

1. Derive a closed-form expression for the Newtonian deflection angle for a single point mass.

2. Develop a numerical routine (deflecThor) to calculate the deflection angles for g point-masses
using Eq. (6).

3. Use deflecThor, pygravlens (routine that finds images for the small-angle GR lens equa-
tion3), and 2D root finding to find solutions to Eq. (5).

3https://github.com/chuckkeeton/pygravlens/blob/main/pygravlens.py
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We discuss each of these steps in the following subsections.

2.2.3 The Newtonian Deflection Angle

Assuming energy and angular momentum conservation, we find that the deflection angle of a light
ray due to a single point mass M at the origin is given by the equation (see Appendix A for details
on the derivation),

|α̂(b)| = 2arcsin

(
r̃√

r̃2 + b2

)
, (8)

where r̃ = (1/2)rs = GM/c2 is half the Schwarzschild radius rs, and b is the impact parameter. We
note that von Soldner predicted that a light ray grazing the surface of the sun (b = R⊙) would have
a deflection angle half the value predicted by Einstein’s Theory of General Relativity, which was
4GM/c2b (to first-order). To check if Eq. (8) is consistent with this prediction, we Taylor expand
the expression around r̃ = 0. Doing so, we find

|α̂(b)| = 2r̃

b
− 2r̃3

3b3
+O(r̃5) =⇒ |α̂(b)| ≈ 2r̃

b
=

2GM

c2b
. (9)

2.2.4 The deflecThor Routine

The deflection angle in Eq. (8) holds only for a single point mass lens at the origin. To obtain the
angle for a general configuration consisting of g lenses, we need to solve the differential equation, Eq.
(6) numerically. Therefore, we wrote the routine, deflecThor(), which calculates the trajectory of
a light ray given the initial position of the source in the plane of the sky (y0, z0), the masses of the
lenses, and their positions in the plane of the sky (yl,0, zl,0) in physical (i.e., SI) units. deflecThor
assumes that all of the lenses are fixed at x = 0, while the source is situated at some x0 < 0.

As illustrated in the integral formulation of the Newtonian deflection angle (Eq. 19) and the
second initial condition in Eq. (6), we require the light ray to travel inwards from −∞ towards the
sources at x = 0. Numerically, we cannot integrate from x0 = −∞ using scipy.integrate.solve ivp;
however, it suffices to pick a sufficiently negative x0.

To pick x0, we ran multiple lensing simulations of a light ray passing close to a single mass at
the origin for various impact parameters, b. Then we compared our results for the deflection angle
with the angles predicted by the General Relativistic deflection angle, noting that the Newtonian
angles should be half the relativistic values. We found that for configurations with b ≤ 100 km,
the ideal x0 for accuracy and efficiency was −105.81 meters, while for b > 100 km, the ideal x0 was
−7× 1010 meters. Therefore, we added an algorithm in deflecThor to calculate the total distance
between the source and each of the lenses in the plane, find the minimum distance, and set x0
accordingly.

Next, while we did not explicitly build energy and angular momentum conservation into our
routine, we were interested in seeing if these conditions were satisfied since the derivation of the
single mass deflection angle, Eq. (8), requires both (see Section A). To do so, we calculated
the trajectory of a light ray for various configurations, and computed the total energy and angular
momentum (see Eq. 14) at constant time steps. Figure 4 shows the results for the configuration used
to produce the last plot in Figure 9. We found that while the total energy and angular momentum
vary, the fractional changes are very small and attributable to numerical errors associated with
numerical integration.
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Figure 4: Plots showing the fractional change in energy, angular momentum, and the speed of
light c for the configuration in the last plot of Figure 9. We calculated each quantity at each time
step of the numerical differential equation solver (a total of 107 steps), but plotted 104 entries for
each.
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2.2.5 2D Root Finding with deflecThor

Our next step is to find solutions to the Virbhadra-Ellis lens equation for a given lens system and
source position to answer questions QIII and QIV. We note that finding solutions to the equation
is equivalent to finding the roots θ to the following equation:

tan (θ)− dLS
dS

(tan(θ) + tan(α̂− θ))− tan(β) = 0. (10)

In this equation, the source position β is known. The deflection angle is a function of a light
ray’s impact parameter with each mass, and hence is a function of θ. Therefore, to find the roots
of this equation, we implemented a 2D root-finding algorithm in conjunction with pygravlens4.
pygravlens is a numerical routine that calculates the angular positions of the solutions to the
small-angle equation, Eq. (1), with the General Relativistic deflection angle, given the source
angular position and the lens positions and masses.

For a given lens system and source, we first used pygravlens to calculate the total number of
images and their positions θi in the small-angle relativistic framework. Although we expect there
to be differences between the predicted image positions in the Newtonian and relativistic cases,
the θi provide initial guesses for the root-finding algorithm, constraining the region over which it
searches for roots of Eq. (10). Therefore, this technique enables us to look for all of the solutions,
if multiple exist, to the Virbhadra-Ellis equation.

3 Results

3.1 Analyzing the Newtonian Deflection Angle

Using the Newtonian deflection angle, Eq. (8), we answer QI, QII, and part of QIII. To do so, we
need to see if the deflection angle diverges at b = 0, and if not, what the maximum value of the
deflection angle is.

Since r̃, b > 0, |α̂(b)| > 0 for all b. Now, we consider its derivative:

d |α̂(b)|
db

= − 2r̃

b2 + r̃2
< 0 ∀b ≥ 0. (11)

Since the derivative is strictly negative and |α̂(b)| > 0 for all b, it follows that |α̂(b)| is a strictly
decreasing function. Moreover,

|α̂(0)| = 2arcsin

(
r̃√

r̃2 + 0

)
= 2arcsin

(
r̃

r̃

)
= 2 · π

2
= π. (12)

This shows that unlike the relativistic deflection angle considered by [7, 10, 14], the Newtonian
deflection angle is bounded, and certainly does not diverge at the position of each point mass.
Figure 5 depicts these results.

Since the proof of the lower bound in [10] is built on the assumption that the time-delay and
hence the deflection diverges at each point mass and we showed this not to be the case for our
equation, we find that the mathematical analysis and techniques presented in [10], in their original
form, do not apply to our problem.

Secondly, infinitely many “relativistic” images are formed when an incoming light ray is deflected
by an angle of 2πn, for some positive integer n [3, 16]. These images are possible in the General
Relativistic framework since, as Figure 5(a) depicts, the deflection angles can get arbitrarily large.

4https://github.com/chuckkeeton/pygravlens/blob/main/pygravlens.py

9

https://github.com/chuckkeeton/pygravlens/blob/main/pygravlens.py


−6 −4 −2 0 2 4 6

x [meters] ×106

−8

−6

−4

−2

0

2

4

6

8

y
[m

et
er

s]

×106

Figure 5: (a) Comparison of Eq. (8), the 1st order GR approximation (4GM/c2b), and the full
GR deflection angle. The horizontal axis is expressed in terms of r̃. The full GR angle (see [6])
diverges at b = 3

√
3rs. (b) Physical implications of (a). These plots show light ray trajectories for

various impact parameters. Each deflection angle is less than π rad.

However, because the Newtonian deflection angle supports a maximum angle of π radians, we find
that relativistic images are not possible in the Newtonian framework, as expected.

Since the maximum deflection angle is π (in which case, the light ray reverses its direction
of travel), it is heuristically possible to construct configurations of g point masses that produce
multiple images. Figure (6) shows a rough depiction of this result.

If we presume that multiple images are possible and that the number of images satisfies the
lower bound of g+1, then the boundedness of α̂ means that we would have to modify the techniques
and proofs given in [10] since it assumes that the angle diverges.

Figure 6: Rough depiction of a configuration that could produce multiple images (blue). All of
the deflection angles are less than π and are achievable. This configuration produces three images,
which saturates the lower bound for 2 point masses.
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3.2 Constructing Multiple Images

As mentioned in Section 3.1, it is possible that our lens equation (5) can produce multiple solutions.
Therefore, using the methodology discussed in Section 2.2.5, we constructed various configurations
for different numbers, g, of point masses. We assume that each of the point masses have the same
mass, Mj = 1M⊙. Since the maximum lensing effects occur when the lens is roughly halfway
between the source and the observer, we assume dLS = dL = (1/2)dS in each of the following
examples. For concreteness, we choose dLS = 1011 m. We found that for much larger distances,
e.g., dLS ∼ 1019 m (consistent with the typical microlensing distances), our routines need to be
made more efficient. We are currently working on making these changes.

3.3 Plots of Various Configurations

Here, we present a few different configurations consisting of g = 1, 2, and 3 point masses. Table 1
provides the bounds on the number of images for each g.

Lower Bound (g + 1) Upper Bound (5g − 5)

g = 1 2 —

g = 2 3 5

g = 3 4 10

Table 1: Table of lower and upper bounds for g point masses, for g = 1, 2, 3. There are no upper
bounds for g = 1; we may produce infinitely many images (e.g., an Einstein Ring).

3.3.1 One Mass (g = 1):
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Figure 7: Plots depicting the predicted image positions in different frameworks for one mass. The
blue curve depicts the critical curve. Both images saturate the lower bound. (a) Two predicted
image positions. We do not observe the source. (b) One image is close to the lens, and another
image of the source is at the source angular position, β = (105, 0)′′ (outside the frame).
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3.3.2 Two Masses (g = 2):
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Figure 8: Example configurations for two masses. (a) Configuration saturating the lower bound,
with the third image outside the top frame of the plot at θ = (0, 105)′′. (b) Another configuration
with three images. (c) Configuration saturating the upper bound of five images.
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3.3.3 Three Masses (g = 3):
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Figure 9: Various configurations with g = 3 point masses. From top left, in clockwise direction:
(a) A configuration that saturates the lower bound, with the fourth image of the source far outside
of the frame, to the right; (b) A configuration with six images; (c) A configuration with eight
images; (d) A configuration with ten images (one image is behind the legend).
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3.4 Discussion of Plots

In short, we showed that the Virbhadra-Ellis equation can have multiple distinct solutions when
working in the Newtonian framework. Figures 7, 8, and 9 show some sample configurations of lens
systems and the corresponding solutions. We compared the image positions for the Virbhadra-
Ellis equation with the corresponding solutions to the small-angle relativistic equation 1 and the
small-angle Newtonian equation (same as Eq. 1, except we now use the Newtonian deflection
angle). We found that the positions were generally consistent with each other, with an average
difference of 10−3” between the Newtonian and GR positions, and < 10−5” between the two New-
tonian predictions. To investigate if these differences were caused by numerical errors, we exam-
ined the precision of the numerical integrators used in deflecThor and the root-finding algorithm
scipy.optimize.fsolve() used to solve our equation. We found that increasing the precisions
did not reduce the average difference, which suggests that they are likely reflecting the difference
in physics underlying the relativistic and Newtonian frameworks.

Most importantly, our plots show that the number of solutions to the Virbhadra-Ellis equation
can saturate the known bounds for the small-angle relativistic equations (Theorems 1 and 2).
Therefore, we make the following conjecture:

Conjecture 1 (Number of Solutions to the Virbhadra-Ellis Equation). Let N be the number
of solutions to the Virbhadra-Ellis equation, where α̂ is the Newtonian deflection angle for a
system of g point masses in a single plane. Then N satisfies the same bounds as found by
[7, 10, 14]; i.e.,

g + 1 ≤ N ≤ 5g − 5.

4 Conclusion

To summarize, we have examined various questions regarding the number of solutions (astrophysi-
cally, the number of lensed images) to the Virbhadra-Ellis lens equation, Eq. (5) in the Newtonian
framework. In doing so, we have provided a framework for a subsequent mathematical analysis of
this problem.

Our most important finding is that our equation can have multiple solutions, similar to the small-
angle relativistic equation studied before by [7, 10, 14]. We exhibited configurations consisting of
g = 1, 2, and 3 point masses in a single plane that saturated the known bounds for the small-
angle relativistic configurations in Section 3.3. We also found that the positions predicted by the
different equations were generally consistent with each other, with a small difference of 10−3”,
which we showed was likely not to be numerical. Our results led us to conjecture that our equation
satisfies the known bounds for the small-angle relativistic case.

After deriving the Newtonian deflection angle for a single mass in Section 3.1, we showed that
it is finite for all impact parameters b, with a maximum of π radians. First, this implies that
while our equation can produce multiple images, it cannot produce infinitely many, unlike in the
GR case. Second, the boundedness of the deflection angle in the Newtonian case implies that the
associated time-delay surface does not diverge near each point mass, contradicting one of the key
assumptions made in the analysis of the lower bound by [10].

From a mathematical standpoint, these are exciting results; although the equations we examined
look and “behave” differently from the small-angle relativistic equation, Eq. (1), we believe that
it satisfies the same bounds on the number of solutions that applies for Eq. (1). This merits a
serious mathematical analysis, which could help us verify or derive these bounds rigorously. While
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the specific details of such an analysis are not clear now, our numerical analysis shows that it must
be substantially different from existing analyses. Therefore, our work can serve to motivate, guide,
and inspire these new mathematical developments.

In the future, we would like to explore these new developments via collaborative efforts with
mathematicians working in adjacent fields, using our current work as a foundation. With the
results we will obtain through such work, we will explore other, mathematically and astrophysically,
interesting variations of this problem. For instance, we can consider a general system of g masses
on different lens planes as studied in [5]. We can also examine the Virbhadra-Ellis equation in
the complete relativistic case and seek explicit counting formulas for the number of images. These
work could inspire new applications to the theory of microlensing and strong-lensing, and drive
astrophysical research. More broadly, through this project and any subsequent work it inspires, we
can continue to explore the rich interactions between mathematics and astrophysics.
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A Deriving the Newtonian Deflection Angle

In this section, we provide a formal derivation of the Newtonian deflection angle Eq. (8). We
consider a point mass M situated at the origin, and an incoming photon whose trajectory has an
impact parameter b with M . The energy Ẽ and angular momentum L̃ per unit mass of the photon
are,

Ẽ =
1

2
v2 − GM

r
=

1

2
ṙ2 +

1

2
r2θ̇2 − GM

r
. (13)

L̃ = r2θ̇. (14)

Substituting the angular momentum into the expression for energy and solving for ṙ, we obtain:

ṙ = ±
(
2Ẽ − L̃2

r2
+

2GM

r

)1/2

. (15)

First, we find the closest distance, r0 between the mass and the photon by setting ṙ = 0:

ṙ = 0 =⇒ r = −GM
2Ẽ

+

√
L̃2

2Ẽ
+
G2M2

4Ẽ2
. (16)

Using the expression for the angular momentum, we find

dθ

dr
= ± L̃

r2

(
2Ẽ − L̃2

r2
+

2GM

r

)−1/2

.
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The initial energy of the photon was (1/2)c2, while its angular momentum as it passed the
impact parameter distance was bc. Assuming energy and angular momentum conservation, the
above expression simplifies to,

dθ

dr
= ± bc

r2

(
c2 − b2c2

r2
+

2GM

r

)−1/2

=
b

r2
(
1− b2r−2 + 2r̃r−1

)−1/2
, (17)

where r̃ = (1/2)rs = GM/c2 and rs is the “Schwarzschild” radius. Likewise, the closest distance r0
simplifies to the following expression:

r0 = −r̃ +
√
b2 + r̃2. (18)

Therefore, the Newtonian deflection angle is [6],

|α̂| = 2

∫ ∞

r0

∣∣∣∣dθdr
∣∣∣∣ dr − π

= 2

∫ ∞

r0

bdr

r2(1− b2r−2 + 2r̃r−1)1/2
dr − π.

(19)

To simplify this integral, we first make the change of coordinates to u = r−1. The new lower
limit of integration is 0, while the new upper limit of integration is,

r−1
0 =

r̃ +
√
r̃2 + b2

b2
. (20)

Hence, the deflection angle now becomes

|α̂| = 2

∫ r̃+
√

r̃2+b2

b2

0

bdu

(1− b2u2 + 2r̃u)1/2
− π. (21)

Now, we define the trigonometric substitution,

bu =

√
r̃2 + b2

b
sin(t) +

r̃

b
=⇒ bdu =

√
r̃2 + b2

b
cos(t)dt.

The new integrand is,

(
1− b2u2 + 2r̃u

)−1/2
=

(
b2 + r̃2

b2
cos2(t)

)−1/2

=
b√

b2 + r̃2
· 1

cos(t)
.

(22)

Therefore, the deflection angle becomes, using this substitution,

|α̂| = 2

∫ π/2

− arcsin

(
r̃√

r̃2+b2

) dt− π

= 2

[
π

2
+ arcsin

(
r̃√

r̃2 + b2

)]
− π

= 2arcsin

(
r̃√

r̃2 + b2

)
.

(23)

This is the expression stated in Eq. (8).
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