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Introduction and Motivation

A math problem

Let g ě 1 be a positive integer, and ξ1, . . . , ξg be g singularities in a
plane with “masses” m1, . . . ,mg , respectively. Consider the 2-d equation:

β “ θ ´

g
ÿ

j“1

mj

θ ´ ξj
|θ ´ ξj |

2
. (1)

Question:

How many solutions, θ, exist for a given β? (Hint: Answer in terms of g .)
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Introduction and Motivation

Gravitational lensing

Eq. (1) comes from gravitational lensing, which can be visualized as:

Figure 1: Depiction of gravitational lensing. For future reference, β :“ y and θ :“ x. This figure
is borrowed from Petters & Werner (2010).
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Introduction and Motivation

Theorem (Petters 1992)

Let g ě 0 be the infinite singularities in a potential ψ : L Ñ R. Suppose
y “ βpθq is not on a caustica, and βpθq is locally stableb with critpβq

bounded. Then for sufficiently large y, the lower bounds on the number of
solutions to Eq. (1) are attained: N “ g ` 1.

acauspβq :“ tβpθq P S : det rJacpβqspθq “ 0u; The set of points where the
magnification formally diverges.

bcritpβq consists of only folds and cusps.

Theorem (Rhie 2003, Khavinson & Neumann 2005)

Let there be g ě 2 infinite singularities in a potential ψ : L Ñ R and
suppose y “ βpθq is not on a caustic. Then the number of solutions to
Eq. (1) satisfies: N ď 5g ´ 5.

Altogether, g ` 1 ď N ď 5g ´ 5 solutions!
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Introduction and Motivation

Mathematical Framework

Proving the lower bound requires differential topology and Morse
Theory.

From Fermat’s Principle, solutions exist at the critical points of the
time-delay surface Tβ : L Ñ R,

∇Tβ “ 0 “ ´β ` θ ´ ∇ψ :“ ´β ` θ ´
dLS
dS

α̂. (2)

Bounds on the number of such points in the surface are given by the
Betti numbers, B0,B1,B2

1, which are topological invariants of a
surface.
This proof relies on the time-delay surface (and hence on α̂) diverging
at each mj .

Proving the upper bound requires elements of complex analysis and
harmonic analysis.

1Bk can be thought of as the “number” of k-dimensional holes in the surface.
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Introduction and Motivation

Applications to Astrophysics

Eqs. (1) and (2), written differently below, are the small-angle
gravitational lens equation.

β
loomoon

src.
pos.

“ θ
loomoon

img.
pos.

´
dLS
dS

α̂pθq
looomooon

deflection angle

. (3)

Gravitational lensing is the relativistic phenomenon in which
spacetime curvature (e.g., due to mass) causes light rays to “bend”
around a mass.
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Introduction and Motivation

Applications to Astrophysics

Figure 2: Schematic depiction of gravitational lensing. The source (quasar) is seen by the
observer at angular position β. There are five images (i.e., five solutions to Eq. 3). Credit:
NASA, ESA, and D. Player (STScI)
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Introduction and Motivation

Motivation

Accounting for the total number of lensed images in observations is
crucial for modeling the lens system, and accurately and precisely
reconstructing the properties of the source

Members of our lensing group work on strong lensing in which
multiple galaxies created complicated configurations of multiple
images, and on microlensing where crossing complicated patterns of
caustics due to the “granular” distribution of stars can add or substract
number of lensed images.

Mathematically, variations of this equation lead to interesting
questions (e.g., how many solutions do “rational harmonic functions”
have?; Khavinson & Neumann 2005) and unifies various
mathematical subfields like differential topology and complex analysis.
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Our Work

Our Work

We studied the full-angle Virbhadra-Ellis Lens Equation (Virbhadra
& Ellis 2000):

tan pβpθqq “ tan pθq ´
dLS
dS

rtan pθq ` tan pα̂ ´ θqs , (4)

where α̂ is the deflection in the Newtonian gravitational framework.

Figure 3:
Schematic
depiction of the
lensing geometry.
This figure is
borrowed from
Virbhadra & Ellis
(2000).
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Our Work

Our Work

For a system of g masses, α̂ is found numerically by solving a
differential equation for the trajectory of a light ray and finding the
difference between the initial and final slopes.

d2r

dt2
“ ´G

g
ÿ

j“1

mj

r ´ ξj
|r ´ ξj |

3
(5)

We are interested in seeing if the bounds found by Petters (1992),
Rhie (2003), and Khavinson & Neumann (2005) hold for our analysis.
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Our Work

Our Work in Context of Previous Research

Previous Work Our Work

Newtonian
Ś

✓
Small-Angle Approximation ✓

Ś

Born Approximation ✓
Ś

Thin-Lens Approximations ✓
Ś

Mathematically Interesting? ✓ ✓

Table 1: Table comparing previous work with our work.

Small-Angle Approximation: Angular positions and deflection
angles are assumed small (! 1 rad).

Born Approximation: Deflection is computed by calculating total
impulse along undeflected light ray.

Thin-Lens Approximation: An incoming light ray bends only as it
passes through L.
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Methodology

Methodology

Derive a closed-form expression for the Newtonian deflection angle for
a single point mass. Can the deflection angle diverge at the mass?

Develop a numerical routine (deflecThor) to calculate the deflection
angles for g point-masses using Eq. (5).

Use deflecThor, pygravlens (routine that finds images for the
small-angle GR lens equation; credit: Professor Keeton), and 2D root
finding to find solutions to Eq. (4).

Can we get multiple images? Can we saturate the upper and lower
bounds?
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Results On the Divergence of the Deflection Angle

Analyzing the Deflection Angle

Using energy and angular momentum conservation, the (magnitude of
the) deflection angle for a single mass is,

|α̂pbq| “ 2 arcsin

ˆ

r̃
?
r̃2 ` b2

˙

, (6)

where b is the impact parameter, and r̃ “ p1{2qrs “ GM{c2 is half
the “Schwarzschild” radius, rs .

We find that lim
bÑ0

|α̂| “ π, and |α̂| ă 8 for all b.

Deflection never diverges!
The analysis used by Petters (1992) must be modified.
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Results On the Divergence of the Deflection Angle

Analyzing the Deflection Angle

Figure 4: Comparison of Eq. (6), the 1st order GR approximation (4GM{c2b), and the full GR
deflection angle. The horizontal axis is expressed in terms of r̃ . The latter diverges at 3

?
3r̃ .
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Results On the Divergence of the Deflection Angle

Analyzing the Deflection Angle
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Figure 5: Plots showing light ray trajectories for various impact parameters. Each deflection
angle is less than π rad.
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Results On the Divergence of the Deflection Angle

Analyzing the Deflection Angle

Figure 6: Heuristically, multiple images should be possible. This follows the conditions listed in
the first theorem (Petters 1992). All deflection angles are less than π rad, and are achievable.
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Results On the Number of Images

Analyzing the Number of Images: g “ 1:

Figure 7: g “ 1, dLS “ dL “ 1011 m. Left: Saturating the lower bound (2) images with
β “ p105, 0q2. Right: Three images with β “ p40, 40q2.
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Results On the Number of Images

Analyzing the Number of Images: g “ 3:

Figure 8: g “ 3, dLS “ dL “ 1011 m. Left: Saturating the lower bound (4) images with
β “ p105, 0q2. Right: Saturating the upper bound (10) with β “ p0, 0q2.
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Discussion

Discussion

Our lens equation Eq. (4) can have multiple distinct solutions.

Image positions are generally consistent with image positions found
for the small-angle GR and small-angle Newtonian equations.

Average difference between full-angle positions and small-angle
positions is „ 10´3”.
Most likely not a numerical error since varying the 2D root
finder/deflecThor precision does not affect this difference.
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Discussion

Conjecture

Let N be the number of solutions to Eq. (4) for a system consisting of g
point masses in a single plane. We conjecture that N satisfies the same
bounds as found by Petters (1992), Rhie (2003), and Khavinson &
Neumann (2005).
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Concluding Remarks

Conclusion

We studied the Virbhadra-Ellis lens equation with Newtonian
deflection angle α̂ (which we found numerically):

tan pβpθqq “ tan pθq ´
dLS
dS

rtan pθq ` tan pα̂ ´ θqs

We found multiple solutions to this equation, and conjectured that
this equation satisfies the same bounds on the number of images as
the simplified equation.

To prove this conjecture, we need to revisit the original differential
topology and analysis proofs. This could lead to new and interesting
mathematical connections.

In the future, we can explore multiplane lensing (e.g., Keeton et al.
2023), and the Virbhadra-Ellis equation in the GR framework.

More broadly, we can explore the rich interactions between
mathematics and astrophysics.
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Thank you!
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