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Abstract

Interpreting and reconstructing distant sources that are gravitationally lensed by galaxy clusters requires accurate
and precise lens models. While high-quality data sets have reduced statistical errors in such models, systematic
errors remain important. We examine systematic lensing effects caused by density fluctuations due to large-scale
structure along the line of sight. We use a multiplane ray-tracing algorithm with the IllustrisTNG 100-3
cosmological simulation of matter distribution and compute the statistical distributions of shear, convergence, and
higher-order deflections using two Hubble Frontier Field clusters as examples (A2744 and MACS J0416.1−2403).
The cosmic shear distribution is Gaussian in each component, while the cosmic convergence distribution is skewed
such that 1+ κ is consistent with a log-normal distribution; the standard deviations for these quantities are at the
level of a few to 10%, depending on the redshift of the source. The deflection from higher-order terms beyond
convergence and shear has significant scatter: the rms deflection is ∼15″, considerably larger than the image
position residuals for current lens models. These results indicate that line-of-sight deflection effects due to large-
scale structure can significantly impact lens models and should not be neglected. We present results in forms that
can be incorporated into future cluster lens models.

Unified Astronomy Thesaurus concepts: Gravitational lensing (670); Galaxy clusters (584); Abell clusters (9)

1. Introduction

With masses of 1014–1015Me, galaxy clusters act as
powerful gravitational lenses to magnify distant galaxies
(e.g., S. Kikuchihara et al. 2020) and offer a variety of
astrophysical applications. For instance, B. L. Frye et al. (2023)
and the JWST PEARLS team report more diversity than
expected among galaxies magnified by the El Gordo cluster
(ACT-CL J0102−4915). L. J. Furtak et al. (2021) analyze the
robustness of constraints on the low mass end of the z∼ 6–7
stellar mass function using Hubble Frontier Fields (HFF)
lensing observations (J. M. Lotz et al. 2017).

To study the galaxies lensed by clusters, it is necessary to
account for lensing distortion and magnification using lens
models that capture the complexity of the cluster and its
environment in some appropriate level of detail (e.g., J.-
P. Kneib & P. Natarajan 2011). The amount of high-quality
data has significantly improved in recent years, and cluster lens
models have become increasingly sophisticated. C. A. Raney
et al. (2020b) compared models of the HFF clusters from
different modeling teams and found that statistical uncertainties
have decreased, but there are still systematic effects that are
important to understand. Our group has begun examining
different modeling choices to see how much they contribute to
the systematic uncertainties. For example, C. A. Raney et al.
(2020a) considered the effects of including galaxies along the
line of sight (LOS). C. A. Raney et al. (2021, Paper I in this
series) analyzed the selection and treatment of cluster member
galaxies, and D. T. Zimmerman et al. (2021, Paper II) studied
the choice of lensed images used as constraints.

One factor that should be explored further is deflection by
large-scale structure along the LOS. In standard lens models,
the mass density is assumed to equal the mean density of the
Universe everywhere except in the main lens plane. Under this
assumption, lensing deflection occurs only at the cluster
redshift. However, density fluctuations due to large-scale
structure can create additional deflections that might not be
negligible given the precision of current lens data and models.
In principle, one could try to model the entire LOS for an

observed lens system and explicitly include it in lens models
(e.g., C. McCully et al. 2017). However, this approach requires
extensive photometric and spectroscopic observations to
characterize all of the galaxies along the LOS, along with
strong assumptions about how the observed galaxies trace the
underlying mass distribution; so it is costly and introduces new
types of systematic uncertainties. An alternative approach is to
estimate deflections from large-scale structure using theory
and/or simulations. R. Bar-Kana (1996), O. Host (2012), and
A. D’Aloisio et al. (2014) used the power spectrum of density
fluctuations to compute cosmic convergence and shear (which
are the lowest-order terms in a Taylor series expansion of the
deflection). S. Hilbert et al. (2009) instead used ray tracing
through the Millennium Simulation (V. Springel et al. 2005),
which better captures higher-order effects in both the density
distribution and the light bending. Here, we adopt a similar ray-
tracing analysis, apply it to the IllustrisTNG simulations
(R. Weinberger et al. 2017; F. Marinacci et al. 2018;
J. P. Naiman et al. 2018; D. Nelson et al. 2018; A. Pillepich
et al. 2018b, 2018a; V. Springel et al. 2018), and quantify the
results in a form needed for the cluster lens modeling
framework introduced by C. A. Raney et al. (2021).
Section 2 summarizes the various components of our
methodology, Section 3 presents our results, and Section 4
summarizes conclusions and implications for future work.
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2. Methodology

2.1. Simulations

The IllustrisTNG Project is a family of 18 magnetohydro-
dynamical simulations of galaxy formation that explicitly treat
different types of “particles” including dark matter, gas, and
stars in a cosmological context (R. Weinberger et al. 2017;
F. Marinacci et al. 2018; J. P. Naiman et al. 2018; D. Nelson
et al. 2018; A. Pillepich et al. 2018b, 2018a; V. Springel et al.
2018). The three primary simulation series are TNG50,
TNG100, and TNG300, which have box sizes of 51.7, 110.7,
and 302.6 comoving megaparsecs (cMpc), respectively. All of
the simulations use periodic boundary conditions and Planck
2015 cosmological parameters: energy density ΩΛ= 0.6911,
matter density Ωm= 0.3089, and Hubble parameter h= 0.6774
(Planck Collaboration et al. 2016). More information about the
simulations can be found in the IllustrisTNG data release
papers and website.1

For our purposes, the TNG100-3 simulation (the third run
in the TNG100 family) provides a good balance between the
size of the simulation and the volume of data. The simulation
box is large enough to allow ∼5000 independent samples of
the image configurations at the highest redshifts we consider,
and even more at lower redshifts (see Figures 3 and 4 below),
while the smoothing length (0.74 comoving kpc) is consider-
ably smaller than the separation between lensed images. (The
TNG300 family of simulations offers larger simulation boxes,
but the smoothing length is closer to the typical image
separations.) The public data set includes 100 snapshots

ranging from redshift 20.05 to 0. The main contributions to
lensing typically occur at redshifts z 1, so we consider the
snapshots from 50 (z= 1.00) to 98 (z= 0.01).
Figure 1 illustrates how we use simulation boxes. For each

snapshot, we can use periodic boundary conditions to tile the
spatial directions; then, we can combine the different snapshots
to fill the volume between the observer and sources. There are
two important details. First, in the simplest construction, a light
ray may repeatedly encounter the same structure at different
epochs of formation. S. Hilbert et al. (2009) address this issue
by carefully choosing angles for light rays to minimize the
number of repetitions. We take a different approach: we rotate
each snapshot box so we are viewing a random face with a
random orientation, and we apply a random spatial translation
between consecutive snapshots. These effects, which are
depicted in Figure 1, combine to provide a reliable statistical
sampling of large-scale structure.
The second detail is that simulation boxes may overlap along

the LOS. If this issue is not addressed, we could overcount
mass in the overlap regions. S. Hilbert et al. (2009) resolve this
problem by grouping halos into the snapshot slice that contains
their centers, and giving special attention to halos that may
move across slice boundaries between snapshots. Since we
operate on individual particles instead of halos, we simply
place bounds on the range of Z coordinates used in each
snapshot box, as depicted at the top of Figure 2.

2.2. Lensing Framework

We follow the lensing framework introduced by C. A. Raney
et al. (2021) and review the key points here.

Figure 1. Schematic representation of how we use simulation boxes to fill the volume. Boxes of the same color correspond to a given snapshot; they can be tiled in the
spatial directions thanks to periodic boundary conditions. To prevent light rays from repeatedly traversing the same region, we apply random rotations to each
snapshot box (depicted by the coordinate axes: X-axis in red, Y-axis in blue, and Z-axis in green), as well as random spatial translations between consecutive snapshots.
Given the simulation size and distance between slices, boxes may overlap and we must take care not to double count mass in the overlap regions (see Figure 2 for
details). Note: in this figure, time flows from top to bottom, so redshift increases from bottom to top.

1 https://www.tng-project.org/data/
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2.2.1. Lens Equation

Each simulation snapshot is projected to obtain a surface
mass density, and the different snapshots are combined using
the multiplane lens equation (e.g., P. Schneider et al. 1992;
A. O. Petters et al. 2001; C. McCully et al. 2014). Consider N
lens planes with index i that increase away from the observer.
Let θi be the angular position of the light ray in plane i, and αi

be the bending angle created by the mass in that plane. The lens
equation can be obtained from the recursive ray-tracing
equation:

( ) ( )åq q a q= -
=

- D

D
, 1j

i

j
ij

j
i i1

1

1

where Di is the angular diameter distance to plane i, and Dij is the
angular diameter distance from plane i to plane j. The source plane
can be treated as plane N+ 1. Equation (1) is computationally
inefficient because each plane involves a sum over all foreground
planes, so the total number of terms is of order N(N− 1)/2.
S. Hilbert et al. (2009) present an equivalent formulation in which
plane j+ 1 can be computed in terms of planes j and j− 1:
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Figure 2. Top: di−1, di, di+1 are the angular diameter distances to three sample simulation boxes. Indices increase from left to right, consistent with lensing
conventions in Equation (1). Simulation boxes whose snapshots are close in redshift may overlap. To avoid double-counting these regions, we implement upper and
lower bounds for particle redshift for each box. Mass in the green region is allocated to plane i − 1; mass in the orange regions is allocated to i, and mass in the dark
purple region is allocated to plane i + 1. Mass in the light purple and yellow regions are overlaps between box i and copies of i − 1 and i + 1 (due to periodic
boundary conditions). Hence, these regions are not allocated to any plane. Bottom: simulations boxes are projected into planes and combined using the multiplane lens
equation. Time flows from right to left, while redshift increases from left to right.
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Note that both versions of the lens equation involve distance
ratios, so it is equivalent to use angular diameter distances or
transverse comoving distances as the ratios are the same in
either case. See the bottom part of Figure 2 for a depiction of
the multiplane lens equation.
For cluster lensing, it makes sense to distinguish the plane

that contains the cluster from the remaining large-scale
structure planes. C. A. Raney et al. (2021) do this by writing
the lens equation in the form

( ( )) ( ) ( )b q a q a q a q= - - - , 4clus fg los

where θ is the image position and β is the source position.
Here, αclus is the deflection produced by the cluster, while αlos

is the deflection produced by the rest of the mass along the
LOS, while αfg is the deflection produced by mass in the

Figure 3. Examples of surface mass density maps for three snapshots of the TNG100-3 simulation. The density maps have the same comoving dimension
(110.7 cMpc) but different angular scales.

Figure 4. Image configurations for two of the Hubble Frontier Fields clusters:
MACS J0416−1.2023 (top) and A2744 (bottom). Colored × indicate
observed images, with points color-coded by the redshift of the source. Red
+ indicates the reference position (assumed to have source redshift zs = 2.0).

Figure 5. Illustration of our process of translating and rotating an image
configuration (M0416 is used here) to compute deflection statistics. Here,
multiple realizations are shown on a single deflection map. However, in our full
analysis, each realization has a random shift applied to each lens plane (see
Section 2.1) to produce a new total deflection map.
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foreground (between the observer and the cluster). The latter
two quantities can be written as

( ) ( )åa a q=
=

- D

D
, 5
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,

( ) ( )åa a q=
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,

where C denotes the cluster plane, while S denotes the source
plane.

2.2.2. Computing Each Plane

After rotating and restricting the simulation coordinates, we
use two-dimensional binning to construct maps of surface mass
density Σi. We find that maps with 12002 pixels offer a good
balance between resolution and particle statistics (i.e., avoiding
shot noise that would arise with small bins). Figure 3 shows
sample density maps for three redshifts.

For lensing calculations, the surface mass density is scaled
by the critical density for lensing to obtain the convergence:2

( )k
p

=
S

S
S =

c

GD
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4
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(Here i still denotes the index of the plane.) The lens potential
ψ for each plane can then be found from the Poisson equation,

( ) ( ) ( )q qy k = 2 . 82

We solve this equation for each plane using Fourier transforms.
Let k be the wavevector, and ˆ ( )y k and ˆ ( )k k be the lens
potential and convergence in Fourier space. Then, Equation (8)
transforms to

ˆ ˆ
∣ ∣

( )y
k

p
= -

k2
. 9

2 2

Figure 6. Distributions of cosmic convergence and shear computed using the two cluster image configurations (top two rows), for three sample redshifts chosen to
illustrate how the distributions evolve. The curves shown here are computed from the 10,000 realizations using Gaussian kernel density estimation (KDE). The bottom
row directly compares the KDE fits (smooth curves) with the sample histograms for A2744.

2 Here the critical density is computed for a source at infinity because the
source distance is explicitly folded into the lens equation rather than factored
into the convergence.
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Numerically, since k2= 0 at the origin, we regularize by setting
ˆ ( )y º0 0. This is equivalent to setting the mean convergence
to zero, so to compensate, we take the potential obtained from
the Fourier analysis and add a term that corresponds to a mass
sheet whose density is the average convergence, k̄, of the
original density map. In other words, the final lens potential is

¯ ∣ ∣ ( )qy y k= +
1

2
. 10FT

2

Finally, the deflection is the gradient of the lens poten-
tial: α=∇ψ.

2.2.3. Characterizing Deflections

We compute LOS deflections at a set of observed image
positions θν, where ν is an index that runs over the images. Any
deflection that is constant across the images is unobservable (it

merely translates the source plane), so we are actually
interested in differential deflections. For a given set of images,
we define a reference point at the center of the image
configuration and assume it has a source redshift zs= 2.0.
The deflection of this “dummy” image is subtracted from the
deflection of each image in the set to obtain differential
deflections.
Consider the deflection for an image at position θ= (x, y). It

is worthwhile to decompose this deflection into contributions
from an effective convergence (κ) and shear (γc and γs), and
contributions from higher-order terms (δα):

[ ( ) ]

[ ( ) ] ( )
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D

D
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LS

S
y s c y

sim,

sim,

This is useful because shear is often included as a free
parameter in lens modeling; if we can measure the distribution
of LOS shear from our analysis, we can use it as a prior or
constraint on future lens models. Convergence is typically
omitted from lens models because of the mass sheet degeneracy
(e.g., M. V. Gorenstein et al. 1988; P. Saha 2000); but if we can
constrain its distribution then it could be included in future
models (this type of analysis has been done for galaxy-scale
lenses; see, e.g., S. H. Suyu et al. 2010; Z. S. Greene et al.
2013; C. E. Rusu et al. 2017; P. Wells et al. 2023). Higher-
order terms in the deflection distribution are typically omitted
as well, especially for cluster lenses, because they have not
been known, but we now have the opportunity to determine
them directly.
We can find the values of p≡ (κ, γc, γs, ax, ay) in

Equation (11) as follows. Define a matrix

⎡
⎣⎢

⎤
⎦⎥

( )=
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n

n

n n n

n n n
M

D

D

x x y

y y x

1 0
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12L

Figure 7. Distributions of cosmic magnification for the three sample source redshifts. As in Figure 6, the curves are computed from the samples using Gaussian KDE
curves for magnification at three source redshifts. To remove outliers, we omit the 1% extremes before determining the domain plotted here.

Table 1
Statistics and Fit Parameters for Shear and Convergence

zs Mean St. Dev. Shape Loc. Scale
(s)

γc,s 1.0 0.000 0.041 L 0.000 0.041
1.4 −0.001 0.078 L −0.001 0.077
5.4 −0.001 0.081 L −0.001 0.081

1 + κ 1.0 0.999 0.057 0.429 0.879 0.110
1.4 0.999 0.109 0.394 0.740 0.239
5.4 1.000 0.113 0.393 0.731 0.249

Note. Columns (3)–(4) give the mean and standard deviation for the shear and
convergence distributions computed with the A2744 image configuration for
the same redshifts shown in Figure 6 (results are also available for other
redshifts). Columns (5)–(7) give parameters for normal (for shear) and log-
normal (for convergence) fits to the distributions. The γc and γs distributions
have similar statistics, and hence have been grouped together. The fits are done
in Python using the scipy.stats package, and the full distributions can
be reconstructed using that package.
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for image ν, where a subscript ν on a distance reminds us to use
the source redshift appropriate for image ν. Then, the deflection
caused by convergence and shear would have the form Mν p.
We can find the optimal values for p by minimizing

∣ ∣ ( )å ac = -
n

n nM p . 132
sim,

2

Solving ∂χ2/∂p= 0 yields

⎜ ⎟
⎛
⎝

⎞
⎠

( )å å a=
n

n
n

nn
 M M p M . 14sim,

Once we solve this linear equation to find the convergence and
shear for this set of deflections, we can compute the higher-
order terms as

( )a a ad = - -n n nM p , 15sim, 0

where α0 is the deflection of the dummy image.

Finally, we compute the rms deflection from higher-order
terms,

∣ ∣ ( )å ada d=
n

n
N

1
. 16rms

img

2

This is useful as a simple way to assess whether the LOS has a
significant effect on lensing.

2.2.4. Deflection Statistics

In the lens modeling framework of C. A. Raney et al. (2021),
the LOS and foreground deflections are treated as random
variables and marginalized in a Bayesian analysis. Consider a
vector δ that contains the x- and y-components of LOS
deflection computed at all of the observed image positions:
δ= (δα1x, δα1y, δα2x, δα2y,K). We focus on the higher-order
terms since the convergence and shear can be handled
explicitly in the lens model. We can construct δ for both the
LOS and foreground components of deflection. Then, for the
Bayesian lens modeling analysis, the quantities we need to

Figure 8. rms values of κ (panel a), γc (b), and γs (c) as a function of source redshift for the two cluster image configurations. The dashed curves show the geometric
factor DLS/DS for each cluster redshift, scaled to match the simulation curves at high source redshift. As discussed in the main text, the fact that the simulation curves
are steeper than the geometric curves indicates that convergence and shear have contributions from the entire line of sight. Panel (d) shows the median absolute
deviation (MAD) instead of rms for magnification, to better handle extreme values; here, the shaded region depicts results from A. D’Aloisio et al. (2014).
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compute are the mean vector 〈δ〉 and the covariance matrix Cδ.
See Equations (A12)–(A14) in Appendix A of C. A. Raney
et al. (2021) for details about how these quantities are used.
Note that we need to compute not only the covariance among
LOS quantities but also the cross-covariance between LOS and
foreground quantities since the foreground portion of each LOS
contributes to both.

2.3. Cluster Fields

To obtain specific image configurations for computing
deflection statistics, we consider two of the HFF clusters. (i)
MACS J0416−1.2023 (M0416) is part of the Massive Cluster
Survey (MACS) and located at redshift z= 0.396 (H. Ebeling
et al. 2001). (ii) A2744 is part of the Abell cluster catalog and
located at redshift z= 0.308 (G. O. Abell et al. 1989). In both
cases, we use the same sets of images that were studied by

C. A. Raney et al. (2020a): M0416 has 95 images of 35
sources, while A2744 has 71 images of 24 sources. The image
configurations are shown in Figure 4.

3. Results and Discussion

We now present the results of our analysis. For each image
configuration, we sample the distribution by generating 10,000
random realizations. For each one, we apply random shifts to
all of the lens planes to generate a new total deflection map. We
also randomly rotate and translate the image configuration, as
shown in Figure 5. We compute the set of deflections a nsim,
and then decompose them into convergence, shear, and higher-
order terms as described in Section 2.2.3. We separately
analyze the convergence/shear and higher-order terms.
As a reminder, our main results use the full IllustrisTNG

simulation, which includes stars and gas as well as dark matter.

Figure 9. Deflections from higher-order terms, computed for the A2744 image configuration. We show the mean (points) and standard deviation (error bars) for each
image, as a function of the distance of the image from the midpoint of the image configuration; the x- and y-components of deflection are slightly offset horizontally for
clarity. The color indicates source redshift. The top panel shows the full LOS deflection δαlos; note that convergence and shear effects have been separated out here.
The bottom panel shows the foreground deflection αfg; here, convergence and shear effects have not been removed because foreground convergence and shear are not
explicitly handled in most lens models.
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For comparison, we also present results for a dark-matter-only
simulation in the Appendix. The two simulations give very
similar results, which makes sense because the distribution of
matter on large scales is not especially sensitive to baryonic
effects.

3.1. Convergence and Shear

We begin with cosmic convergence and shear to connect
with previous work and provide information that can be used as
constraints or priors on future lens models. For this analysis, we
override the actual redshifts of the sources and assume that all
of the images have the same source redshift;3 we can then
explore how the convergence and shear vary with zs. For each
assumed source redshift, we process the simulation deflections

to determine the convergence κ and the two components of
shear γc and γs.
Figure 6 shows the convergence and shear distributions for

both image configurations for three representative source
redshifts: zs= 1, 1.4, and 5.4 were chosen to illustrate the
evolution of the distributions.4 The shear distributions are
approximately symmetric and centered on zero, which makes
sense because there is no preferred direction in the Universe.
The convergence distributions are skewed; they tend to peak
slightly below zero because most locations in the Universe are
slightly underdense, and have a tail to positive values because
nonlinear structure formation can create large overdensities.
Overall, as the source redshift increases the distributions
broaden, and the peak of the convergence distribution becomes
slightly more negative. Results for the two cluster fields differ
slightly because of the different cluster redshifts.

Figure 10. Similar to Figure 9, but for the M0416 image configuration.

3 In the observed lens systems, the source redshift is closely tied to the image
configuration, so any modeling analysis cannot override the true redshifts. Our
analysis does not involve any lens modeling though (as it does not attempt to
include the cluster itself). We simply use the observed images to obtain a
realistic set of image positions.

4 For each redshift, we have 10,000 realizations of (κ, γc, γs). We use
Gaussian kernel density estimation to compute smooth distributions from the
samples.
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We find that the shear distributions are well-described by a
normal distribution, while the (1+ κ) distributions are well-
described by a log-normal distribution. (The bottom row of
Figure 6 compares the simulation samples shown by
histograms with the normal and log-normal fits.) The
parameters of the fitted distributions are given in Table 1.

Given the convergence and shear, we can compute the
cosmic magnification as

( )
( )m

k g g
=

- - -
1

1
. 17

c s
2 2 2

Figure 7 shows the magnification distributions. Because magni-
fication is nonlinear and can formally diverge, the simulation
results have a small number of significant outliers; we remove the
extreme 1% data points (0.5% low and 0.5% high) when
determining the domain for plotting the distributions. Like the
convergence distributions, the magnification distributions are
skewed with peaks slightly below 1 and tails to the right.

R. Bar-Kana (1996) and A. D’Aloisio et al. (2014) presented
similar analyses of cosmic convergence and shear using their
theoretical analyses based on the matter power spectrum. They
reported rms values as a function of source redshift (see Figures
8 and 4 in the respective papers), so we show equivalent
quantities in Figure 8. Because of outliers, for the magnification
distribution, we instead use the median absolute deviation
(MAD), which is a more robust statistic. In general, our values
are somewhat larger than the previous results: for convergence,
R. Bar-Kana reported κrms(zs∼ 5)∼ 8% compared to our
∼10%; and for magnification, A. D’Aloisio et al. reported
μmad(zs∼ 2)∼ 6%–8% compared to our 9%−10%.5 These
differences are reasonable given that the analyses used different
cosmological parameters and methodologies.

Figure 11. Deflection covariance matrices for the A2744 (top) and M0416 (bottom) image configurations. The left images show the covariance matrices for the full
line of sight; the right images show the covariance between the foreground component and the full LOS. The matrix indices loop over the x- and y-components of
images (1x, 1y, 2x, 2y,K). We use the same image indices as C. A. Raney et al. (2020a).

5 Note that A. D’Aloisio et al. (2014) actually reported a standard deviation.
We converted their value to MAD assuming a normal distribution, but that
conversion is model-dependent.

10

The Astrophysical Journal, 975:287 (15pp), 2024 November 10 Madhava & Keeton



If the deflections were entirely due to convergence and shear
in the cluster lens plane, the evolution with source redshift
would be governed by the geometric factor DLS/DS, which is
shown with the dashed curves in Figure 8. The simulation
curves are steeper than the DLS/DS curve because of
contributions from the entire LOS. There is some difference
between the two fields because of the difference in the cluster
redshift.

3.2. Higher-order Terms

To study deflection from higher-order terms, we rerun the
calculations using the actual redshift for each source. Figures 9
and 10 show the results for the A2744 and M0416 image
configurations, respectively.

The mean deflections are close to zero, which makes sense
because there is no preferred direction in the Universe. For
A2744, the average over all images is −0 06 for the full LOS
and has a magnitude less than 0 001 for the foreground. For
M0416, the corresponding values are 0 009 for the full LOS
and less than 0 001 for the foreground.

The LOS deflection distributions are quite broad, however.
For A2744, the standard deviation averaged over all images is
9 8, while the rms deflection is 14 1. For M0416, the average
standard deviation is 11 0 and the rms is 15 6. These values
are considerably larger than the residuals for HFF lens models,
which are typically below 1″. Thus, our results indicate that the
effects of LOS deflection are not negligible and need to be
taken into account in future lens models. There are likely to be
strong covariances among the deflections for different images,
so it is important to compute the covariance matrices as shown
in Figure 11. The lens modeling framework introduced by
C. A. Raney et al. (2021) provides a way to generate new lens
models that account for LOS effects through the mean vector
(which we have found to be equivalent to zero) and the
covariance matrices.

By contrast, the foreground deflection distributions are
considerably smaller, thanks to smaller path lengths and weaker
geometric effects compared with the full LOS.

4. Conclusions

To summarize, we have analyzed contributions from
cosmological large-scale structure to systematic uncertainties
in cluster lens models. Specifically, we have used ray tracing
through the TNG100-3 cosmological simulation to compute
the distribution of deflections by large-scale structure, using the
HFF lensing clusters A2744 and MACS 0416 as examples.

We find that the cosmic shear distribution is Gaussian in
each component, with a standard deviation of 4%–8%
depending on the redshift of the source. The cosmic
convergence distribution is skewed such that 1+ κ is
consistent with a log-normal distribution; the standard devia-
tion of κ is at the level of 6%–11%, although it is better to use
the parameters in Table 1 to capture the shape of the
distribution. The redshift dependence of shear and convergence
cannot be explained by the geometric factor DLS/DS that would
arise if all of the contributions were from a single plane at the
lens redshift. Our results for cosmic shear, convergence, and
magnification are broadly consistent with previous theoretical
studies using power-spectrum models (R. Bar-Kana 1996;
O. Host 2012; A. D’Aloisio et al. 2014).

There are contributions to deflection beyond convergence
and shear because of nonlinearities in structure formation and
lensing. For these higher-order terms, mean deflections are
effectively zero because there is no preferred direction in the
Universe, but the scatter is significant. The rms deflection from
higher-order terms is 14 1 for A2744 and 15 6 for M0416.
These values are significantly higher than the residuals between
observational data and older lens models (1″). The rms
deflection is a bit of a blunt instrument because the deflections
for different images are likely to have significant covariances,
so we have computed full covariance matrices as well.
We conclude that deflection from large-scale structure is not

negligible for cluster lensing. Future lens models can use our
results for cosmic shear and convergence as constraints or
priors on those model parameters. They can also incorporate
the statistics of higher-order terms by using covariance matrices
like the ones we have computed in the theoretical framework
presented by C. A. Raney et al. (2021). It will be interesting to
see how much large-scale structure contributes to the overall
error budget for cluster lens models, and whether it resolves
differences between results from different HFF lens modeling
teams.
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Appendix

It is interesting to consider whether our results are
sensitive to baryonic effects by repeating the analysis using
a dark-matter-only version of the Illustris TNG simulation.
Specifically, we apply the same methodology to data from
the TNG100-3-Dark simulation. This simulation has the
same number of dark matter particles as TNG100-3, but the
particle mass is about 19% higher to account for the absence
of baryons and ensure that the simulation has the intended
mean density.
Overall, we find that results from the dark-matter-only

simulation are very similar to the results from the full
simulation. For example, Figure 12 compares the convergence
and shear distributions for the two cases using the A2744
image configuration, and Table 2 summarizes properties of the
convergence and distributions (for comparison with Table 1).
Seeing similar results makes sense because dark matter is more
abundant at cosmic scales, and hence plays a bigger role in
cosmological large-scale structures than baryons.
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Figures 13 and 14 show the deflection analysis for the
A2744 and M0416 image configurations, respectively (for
comparison with Figures 9 and 10). As before, the mean
deflections are approximately zero since there is no preferred

direction in the Universe. For A2744, the standard
deviation averaged over all images is 9 8, while the rms is
14 1. For M0416, the corresponding values are 10 8
and 15 4.

Figure 12. Comparison of the convergence (κ) and shear (γc,s) distributions for the full- and dark-matter analyses using the A2744 image configuration. As in
Section 3, we illustrate the results for zs = 1, 1.4, 5.4. The distributions for the two analyses are fairly consistent with each other. We provide key statistics, like the
mean and standard deviation, in Table 2.
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Figure 13. Similar to Figure 9, but for the dark-matter-only simulation.
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